首页 > 综合百科 > 对数函数判断奇偶性

对数函数判断奇偶性

来源:互联网转载 时间:2024-10-06 17:28:00 浏览量:

对数函数的y=logaX(a大于0且不等于1,x大于0),可以看出对数函数的定义域是(0,+∞),并不关于函数对称,不满足函数奇偶性的基本前提,因此对数函数是非奇非偶函数。

对数函数判断奇偶性

利用定义,先判断定义域是否关于原点对称,然后观察以-X代X是否函数值满足奇偶函数的定义。

对数型函数的奇偶性判断,一般不仅要利用奇偶性定义而且还有结合对数运算的性质。当然在这之前需看定义域是否关于原点对称。

例如判断函数y=ln(1-x)/(1+x)的奇偶性。

解析:函数的定义域为(-1,1),关于原点对称。

f(-x)=ln(1+x)/(1-x))=ln[(1-x)/(1+x)]^-1=-ln[(1-x)/(1+x)]=f(x)。所以该函数为奇函数。

设函数f(x)的定义域D:

⑴如果对于函数定义域D内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数。

⑵如果对于函数定义域D内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

⑶如果对于函数定义域D内的任意一个x,f(-x)=-f(x)与f(-x)=f(x)同时成立,那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。

⑷如果对于函数定义域内的任意一个x,f(-x)=-f(x)或f(-x)=f(x)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。

© 转乾企业管理-攻考网 版权所有 | 黔ICP备2023009682号

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:303555158#QQ.COM (把#换成@)