幂函数的性质和特征
一、幂函数的性质和特征
1、幂函数的概念
一般地,函数$y=a^x$叫做幂函数,其中$x$为自变量,$a$为常数。
2、幂函数的特征
(1)解析式右边是一个幂;
(2)系数为1;
(3)底数是自变量;
(4)指数是常数。
3、幂函数的性质
(1)$y=x$
定义域为$\mathbf{R}$;值域为$\mathbf{R}$;奇函数;在$\mathbf{R}$上单调递增;恒过定点$(1,1)$;幂函数在第四象限内无图象。
(2)$y=x^2$
定义域为$\mathbf{R}$;值域为$y\geqslant0$;偶函数;在$(-∞,0)$上单调递减,在$(0,+∞)$上单调递增;恒过定点$(1,1)$;幂函数在第四象限内无图象。
(3)$y=x^3$
定义域为$\mathbf{R}$;值域为$\mathbf{R}$;奇函数;在$\mathbf{R}$上单调递增;恒过定点$(1,1)$;幂函数在第四象限内无图象。
(4)$y=x^\frac{1}{2}$
定义域为$x\geqslant0$;值域为$y\geqslant0$;非奇非偶函数;在$(0,+∞)$上单调递增;恒过定点$(1,1)$;幂函数在第四象限内无图象。
(5)$y=x^{-1}$
定义域为$x≠0$;值域为$y≠0$;奇函数;在$(-∞,0)$和$(0,+∞)$上单调递减;恒过定点$(1,1)$;幂函数在第四象限内无图象。
二、幂函数的性质的相关例题
已知幂函数$f(x)=(t^2-t+1)·x^{\frac{7+3t-2t^2}{5}}(t∈\mathbf{N})$是偶函数,则实数$t$=___
A.0 B.-1或1
C.1 D.0或1
答案:C
解析:$∵f(x)=(t^2-t+1)·x^{\frac{7+3t-2t^2}{5}}$是幂函数,∴$t^2-t+1=1$,即$t^2-t=0$,解得$t=0$或$t=1$。当$t=0$时,$f(x)=x^\frac{7}{5}$是奇函数,不满足题意;当$t=1$时,$f(x)=x^\frac{8}{5}$是偶函数,满足题意,故选C。
相关文章
- 林丽渊现在做什么(林丽渊)
- 鲫鱼汤怎么做好喝又营养(鲫鱼汤怎么做)
- 水手 歌词(回味美好歌词(水手))
- 1700克有几斤
- 儿子结婚请柬邀请函怎么写
- 简单又炫酷的转笔技巧(转笔技巧)
- 大连财经学院宿舍条件怎么样 有独立卫生间和空调吗
- 跳舞solo是什么意思
- 男方生育保险能报多少钱,生育保险计算方式
- 2018年每一个月各有几天
- broccoli
- 盎怎么读组词(盎怎么读)
- 上海10号线地铁首末班车时间
- 2020年春运时间开始结束是几号(春运火车票什么时候可以预定)
- 无置喙成语,跟一二有关的成语
- 池晟俊(关于池晟俊简述)
- 描写景物的 什么
- 探秘LOL吸血鬼:德莱文与致命魅力
- 中国移动有什么好的套餐(中国移动套餐有哪些)
- 创意设计(关于创意设计介绍)