指数函数运算法则
来源:互联网转载
时间:2025-07-08 18:26:01
浏览量:
指数函数运算法则是:(1)am+n=am?an(2)amn=(am)n(3)a1/n=n√a(4)am-n=am/an 注意:在指数函数的定义表达式中,在ax前的系数必须是数1,自变量x必须在指数的位置上,且不能是x的其他表达式,否则,就不是指数函数。
指数函数是重要的基本初等函数之一。一般地,y=ax函数(a为常数且以au003e0,a≠1)叫做指数函数,函数的定义域是 R 。
指数函数的函数性质:
(1) 指数函数的定义域为R,这里的前提是a大于0且不等于1。对于a不大于0的情况,则必然使得函数的定义域不连续,因此我们不予考虑,同时a等于0函数无意义一般也不考虑。
(2) 指数函数的值域为(0,+∞)。
(3) 函数图形都是上凹的。
(4) au003e1时,则指数函数单调递增;若0
(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(不等于0)函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。其中水平直线y=1是从递减到递增的一个过渡位置。
(6) 函数总是在某一个方向上无限趋向于X轴,并且永不相交。
TAG:
指数函数运算法则