首页 > 知识与问答 > 圆周率的故事简写100字(圆周率的故事)

圆周率的故事简写100字(圆周率的故事)

来源:互联网转载 时间:2025-04-18 05:26:00 浏览量:

1、故事:一天早上,祖冲之正在家中读书,读的就是那刘徽做了注的《九章算术》,看到“割圆术”处,心想:将那正多边形的边数算到96个并不算多,多边形的周长与圆周长相差还甚远,为何不再多算一些。

2、正多边形的边长愈多,多边形的周长不就更接近圆周长了吗?那算出的周率不就更精确了吗?想着想着,抬头一看,正见儿子在外玩耍,便叫道:“暅儿,你且去后山砍两根竹子来。

3、”祖冲之的儿子叫祖暅,聪明伶俐,受祖冲之的影响,耳濡目染,也喜欢了数学,后来也成了数学家,提出了著名的“祖暅定理”。

4、听见父亲唤自己,急忙跑了进来问道:“爹,唤儿有什么事情?”祖冲之说道:“你去后山砍一根毛竹来。

5、”暅儿问道:“又要做算筹?”祖冲之答道:“不错,你去砍了与我拿来。

6、”成就:祖冲之在数学上的杰出成就,是关于圆周率的计算。

7、三国时期,刘徽提出了计算圆周率的科学方法——“割圆术”,用圆内接正多边形的周长来逼近圆周长。

8、刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确。

9、祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,并得出了π分数形式的近似值,取22/7为约率,取355/113为密率,其中六位小数是3.141929,它是分子分母在1000以内最接近π值的分数。

10、南北朝的时候,祖冲之为了计算圆周率,他在自己书房的地面画了一个直径1丈的大圆,从这个圆的内接正六边形一直作到12288边形,然后一个一个算出这些多边形的周长。

11、那时候的数学计算,不是用现在的***数字,而是用竹片作的筹码计算。

12、他夜以继日、成年累月,终于算出了圆的内接正24576边形的周长等于3丈1尺4寸1分5厘9毫2丝6忽,还有余。

13、因而得出圆周率π的值就在3.1415926与3.1415927之间,准确到小数点后7位,创造了当时世界上的最高水平。

14、故事:一天早上,祖冲之正在家中读书,读的就是那刘徽做了注的《九章算术》,看到“割圆术”处,心想:将那正多边形的边数算到96个并不算多,多边形的周长与圆周长相差还甚远,为何不再多算一些。

15、正多边形的边长愈多,多边形的周长不就更接近圆周长了吗?那算出的周率不就更精确了吗?想着想着,抬头一看,正见儿子在外玩耍,便叫道:“暅儿,你且去后山砍两根竹子来。

16、”祖冲之的儿子叫祖暅,聪明伶俐,受祖冲之的影响,耳濡目染,也喜欢了数学,后来也成了数学家,提出了著名的“祖暅定理”。

17、听见父亲唤自己,急忙跑了进来问道:“爹,唤儿有什么事情?”祖冲之说道:“你去后山砍一根毛竹来。

18、”暅儿问道:“又要做算筹?”祖冲之答道:“不错,你去砍了与我拿来。

19、”成就:祖冲之在数学上的杰出成就,是关于圆周率的计算。

20、三国时期,刘徽提出了计算圆周率的科学方法——“割圆术”,用圆内接正多边形的周长来逼近圆周长。

21、刘徽计算到圆内接96边形,求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确。

22、祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间,并得出了π分数形式的近似值,取22/7为约率,取355/113为密率,其中六位小数是3.141929,它是分子分母在1000以内最接近π值的分数。

23、南北朝的时候,祖冲之为了计算圆周率,他在自己书房的地面画了一个直径1丈的大圆,从这个圆的内接正六边形一直作到12288边形,然后一个一个算出这些多边形的周长。

24、那时候的数学计算,不是用现在的***数字,而是用竹片作的筹码计算。

25、他夜以继日、成年累月,终于算出了圆的内接正24576边形的周长等于3丈1尺4寸1分5厘9毫2丝6忽,还有余。

26、因而得出圆周率π的值就在3.1415926与3.1415927之间,准确到小数点后7位,创造了当时世界上的最高水平祖冲之一生钻研自然科学,其主要贡献在数学、天文历法和机械制造三方面。

27、他在刘徽开创的探索圆周率的精确方法的基础上,首次将“圆周率”精算到小数第七位,即在3.1415926和3.1415927之间,他提出的“祖率”对数学的研究有重大贡献。

TAG: 3.1415926

© 转乾企业管理-攻考网 版权所有 | 黔ICP备2023009682号

免责声明:本站内容仅用于学习参考,信息和图片素材来源于互联网,如内容侵权与违规,请联系我们进行删除,我们将在三个工作日内处理。联系邮箱:303555158#QQ.COM (把#换成@)