排序不等式的定义和应用技巧
一、排序不等式的定义和应用技巧
1、排序不等式
设$a_1leqslant a_2leqslant cdotsleqslant a_n$,$b_1leqslant b_2leqslant cdotsleqslant b_n$为两组实数,$c_1leqslant c_2leqslant cdotsleqslant c_n$为$b_1leqslant b_2cdotsleqslant b_n$的任一排列,则$S=a_1c_1+a_2c_2+a_3c_3+cdots+a_nc_n$称为数组$(a_1,a_2,cdots,a_n)$和$(b_1$,$b_2$,$cdots$,$b_n)$的乱序和,其中按相反顺序相乘所得积的和$S_1$=$a_1b_n$+$a_2b_{n-1}$+$a_3b_{n-2}$+$cdots$+$a_nb_1$称为反序和,按相同顺序相乘所得积的和$S_2$=$a_1b_1$+$a_2b_2$+$a_3b_3$+$cdots$+$a_nb_n$称为顺序和。
2、排序不等式定理
定理:(排序不等式,又称排序原理)设$a_1≤a_2leqslant cdotsleqslant a_n$,$b_1leqslant b_2leqslant cdotsleqslant b_n$为两组实数,$c_1,c_2,cdots,c_n$为$b_1,b_2,cdots,b_n$的任一排列,则$a_1b_n+a_2b_{n-1}+a_3b_{n-2}+cdots+a_nb_1$$leqslant a_1c_1+a_2c_2+a_3c_3+cdots+a_nc_n$$leqslant a_1b_1+a_2b_2+a_3b_3+cdots+a_nb_n$,当且仅当$a_1=a_2=cdots=a_n$或$b_1=b_2=cdots=b_n$时,反序和等于顺序和。
排序不等式可简记为:反序和$≤$乱序和$≤$顺序和。
3、排序不等式的应用技巧
(1)使用排序不等式时,必须存在有大小顺序的两组数列(或代数式),从而探究对应项乘积和的大小关系。
(2)本质:两组数列顺序同向单调(同增或同减)时,对应项乘积和最大,反向单调(一增一减)时,对应项乘积和最小,当其中一组数列为常数数列时,对应项乘积和不变。
(3)排序原理的思想:在解答数学问题时,常常涉及一些可以比较大小的量,它们之间并没有预先规定大小顺序,我们可以利用排序原理的思想方法,将它们按一定顺序排列起来,继而利用不等关系来解题。
二、排序不等式的相关例题
设$a,b,c$为正数,求$ rac{a}{b+c}+ rac{b}{c+a}+ rac{c}{a+b}$的最小值为___
A.$ rac{3}{2}$
B.2
C.$ rac{5}{2}$
D.3
答案:A
解析:不妨设$a≥b≥c$, 于是$a+b≥c +a≥b+c$。又∵$ageqslant bgeqslant c$,$ rac{1}{b+c}≥ rac{1}{c+a}≥ rac{1}{a+b}$,∴由排序不等式:顺序和≥乱序和得$ rac{a}{b+c}+ rac{b}{c+a}+ rac{c}{a+b}$$≥ rac{b}{b+c}+ rac{c}{c+a}+ rac{a}{a+b}$,$ rac{a}{b+c}+ rac{b}{c+a}+ rac{c}{a+b}$$≥ rac{c}{b+c}+ rac{a}{c+a}+ rac{b}{a+b}$,两式相加得$2left( rac{a}{b+c}+ rac{b}{c+a}+ rac{c}{a+b} ight)≥3$,∴$ rac{a}{b+c}+ rac{b}{c+a}+ rac{c}{a+b}≥ rac{3}{2}$。当且仅当$a=b=c$时,等号成立。∴$ rac{a}{b+c}+ rac{b}{c+a}+ rac{c}{a+b}$的最小值为$ rac{3}{2}$。
相关文章
- 林丽渊现在做什么(林丽渊)
- 鲫鱼汤怎么做好喝又营养(鲫鱼汤怎么做)
- 水手 歌词(回味美好歌词(水手))
- 1700克有几斤
- 儿子结婚请柬邀请函怎么写
- 简单又炫酷的转笔技巧(转笔技巧)
- 大连财经学院宿舍条件怎么样 有独立卫生间和空调吗
- 跳舞solo是什么意思
- 男方生育保险能报多少钱,生育保险计算方式
- 2018年每一个月各有几天
- broccoli
- 盎怎么读组词(盎怎么读)
- 上海10号线地铁首末班车时间
- 2020年春运时间开始结束是几号(春运火车票什么时候可以预定)
- 无置喙成语,跟一二有关的成语
- 池晟俊(关于池晟俊简述)
- 描写景物的 什么
- 探秘LOL吸血鬼:德莱文与致命魅力
- 中国移动有什么好的套餐(中国移动套餐有哪些)
- 创意设计(关于创意设计介绍)